The first version of Unix was developed by Bell Labs (part of AT&T) in 1969, making it more than
forty years old and one of the few cases of a computer technology that has survived more than a
decade. Its roots go back to when computers were large and rare, time on them very expensive and
shared between many users — Unix was designed from the beginning® to have multiple users working
simultaneously. While this might seem strange and unnecessary in a world where everyone has their
own laptop, computing is again moving back to remote central services with many users: the compute
power required for mapping next-generation sequencing data or de novo assembly is beyond what is
available or desirable to have sitting on your lap. In many ways, the “Cloud” (or what ever has replaced
it by the time you read this) requires ways of working that are more in common with traditional Unix
machines than the personal computing emphasised by Windows and Apple Macintosh.

USA federal monopoly law prevented AT& T from commercialising Unix but interest in using it
increased outside of Bell Labs and eventually they decided to give it away freely, including the source
code, which allowed other institutions to modify it. Perhaps the most important of these institutions
was the University of Berkeley? which distributed a set of tools to make Unix more useful and made
changes that significantly increased performance. The involvement of several universities in its
development meant Unix was ideally placed when the internet was created and many of the
fundamental technologies were developed and tested using Unix machines. Again these improvements
were given away freely, some of the code being repurposed to provided networking for early versions of
Windows and even today several utilities in Windows Vista incorporate Berkeley code®.

As well as being a key part in the development of the early internet, a Unix machine was also the
first web server, a NeXT cube*. NeXT was an early attempt to make a Unix machine for desktop use,
extremely advanced for its time but also very expensive so they never really caught on outside of the
finance industry. Apple eventually bought NeXT, its operating system becoming OsX, and this
heritage can still be seen in its programming interfaces. Apple is now the largest manufacturer of Unix
machines; every Apple computer, the iPhone and most recent iPods have a Unix base underneath
their facade.

By the early 90s Unix became increasingly commercially important which inevitably lead to legal
trouble: with so many people giving away improvements freely and having them integrated into the
system, who actually owned it? The legal trouble cast uncertainty over the freely available Unix
versions, creating an opening for another free operating system.

The vacuum was filled by Linux, a freely available computer operating system® similar to Unix and

1 This is lie. In truth, Unix actually grew out of a desire to play a game called Space Travel
http://en.wikipedia.org/wiki/Space Travel (video game) and the features that made it an operating
system were incidental. Initially it only supported one user and the name Unix, originally Unics, is an
unfortunate pun on MuLTics, a multi-user system available at the time.

2 A significant proportion of Mac OsX has its roots in the Berkeley Standard Distribution (BSD).

3 For example: strings ftp.exe | grep Cal
@(#) Copyright (c) 1983 The Regents of the University of California.

4 See http://en.wikipedia.org/wiki/NeXT

5 More correctly, Linux is just the kernel, the central program from which all others are run. Many more tools
in addition to this are required to make an operating system, tools provided by the GNU project.
http://www.gnu.org/.

http://en.wikipedia.org/wiki/Space_Travel_(video_game)
http://www.gnu.org/
http://en.wikipedia.org/wiki/NeXT

started by Linus Torvalds in 1991 as a hobby. Importantly, Linux was written from scratch and did not
contain any of the original Unix code and so was free of legal doubt. Coinciding with the penetration
of the internet onto university campus and the availability of cheap but sufficiently powerful personal
computers, Linux rapidly matured with over one hundred developers collaborating over the internet
within two years. The real advances driving Linux were social rather than technological, disparate
volunteers donating time on the understanding that, in return for giving their work away freely,
anything based on their work is also given away freely and so they in turn benefit from improvements.
The idea that underpins this sharing and ensures that nobody can profit from anyone else's work
without sharing is “copyleft”, described in a simple legal document called the GNU General Public
Licence http://www.gnu.org/copyleft /° which turns the notion of copyright on its head.

Today, Linux has become the dominant free Unix-like operating system with millions of users and
support from many large companies.

This tutorial concentrates on the Ubuntu distribution (packaging) of Linux, which is one of the
most widely used, but all the examples are fairly generic and should work with most Linux, Unix and
Macintosh computers. There are many different guides on the web about how to install Ubuntu but
we recommend installing it as a virtual machine on your current computer, see separate
documentation for instructions.

The Ubuntu Linux distribution is generally easy to use and it is updated (for free) every six months.
At the time of writing, the current version of Ubuntu is 11.10, named after its release date in October
2011, and also known as “Oneiric Ocelot”; the next version, 12.04 or “Precise Pangolin” will be
released in April 2012 and will be designated a Long Term Support (LTS) edition, meaning that it will
be receive fixes and maintenance upgrades for five years before being retired, and is the best option if
you don't want to be regularly upgrading your system.

A significant effort has been undertaken to make Ubuntu easy to use, so even novice computer
users should have little trouble using it. There is a considerable number of tutorials available for users
new to Ubuntu; the official material is available at https://help.ubuntu.com/11.10/ but a quick
search on the web will locate much more. In addition, there is a lot of documentation installed on the

machine itself: you can access this by moving the mouse towards Ubuntu Desktop at the top left of
the screen and clicking on the help menu that appears. In general, the name of the program you are
currently using is displayed at the top-left of the screen and moving the mouse to top of the screen
will reveal the programs menus in a similar fashion to how they are displayed on the Mac (although,
confusingly, some programs display their menus within their own window rather like a Windows
computer).

An alternative way to get help is to click on the circular symbol (a stylised picture of three people
holding hands) at the top left of the screen and type help in the search box that appears. For want of
a better name, we will refer to the people-holding-hands button as the Ubuntu button although the
help text that appears describes it as “Dash home”.

Ubuntu comes free with many tools, including web browsers, file managers, word processors, etc.
Generally there is a free equivalent for most software you might use and you can browse those
available by clicking on the Ubuntu Software Centre, whose icon at the left of the screen looks like a

6 It should be noted that the GNU project, and the philosophy behind it, predate Linux by almost a decade.

https://help.ubuntu.com/10.10/
http://www.gnu.org/copyleft/

shopping bag full of goodies. The Ubuntu Software Centre is just a starting point and there are many
other sources available, both of prepackage software specifically for Ubuntu and source code that will
require compiling. Search the web for "Ubuntu software repositories” for more information on obtaining
additional software.

While there are explicit key combinations for copy and pasting text, just like on Windows or Mac,
shift-control-c and shift-control-v in Ubuntu, this convention is not respected by all programs. Unix
has traditionally been more mouse centred with the left mouse button used to highlight text and the
middle button used to copy it. You may find yourself accidentally doing this occasionally if you aren't
used to using the middle mouse button.

Starting applications from icons, opening folders, etc... only requires a single click, rather than the
double click required on Windows, making the action of pressing buttons and selecting things from
menus more consistent with each other. Accidentally double clicking will generally result in an action
being done twice, not normally a bad thing but it does means that impatient users can quickly find
their desktop covered in windows.

Perhaps the most important difference you are likely to encounter on a daily basis is that the
names of files and directories are case sensitive: README.txt, readme.txt and readme. TXT all refer
to different files. This is different from both Windows and Mac OsX’, where upper and lower-case
characters are preserved in the name but the file can be referred to using any case.

There are many examples in this tutorial to be tried, enclosed in boxes like the one below which
explains the format of the examples. The files required for the examples can be downloaded from
http://tinyurl.com/32a2gbk/unix.tgz although the example below shows how to automatically
download and unpack the file ready for use.

Ordinary text, starting with a # and indented on the first line, is a comment
on the example.

Bold text is something to type in at the command-line. A single ¢

line wrapped on to multiple lines is indicated by the '¢' symbol

This is now a separate command.

Italic text is a reply from the computer to what was typed in

Now we will download and install the examples
Firstly, ensure that we are in the home directory
cd

Where an example requires you to be in a specific directory, it will start

with the command and reply to tell you where you should be. If you are not

in the correct directory, move to it before doing the example (see later for
how to change directory. Here 'ebi' is just the name of the user (you),

yours may vary.

pwd

/home/ebi/

Download and unpack the examples. You don't need to understand what this is
doing yet, although you will by the time you have worked through this

document.

wget -0 - ‘'http://tinyurl.com/32a2gbk/unix.tgz' | tar -zx

If you are trying the examples out on a Mac, the command wget is not

7 Despite its Unix heritage. This behaviour is deliberate to maintain compatibility with earlier versions of the
Mac operating system.

http://tinyurl.com/32a2gbk/unix.tgz

available and the above will not work. Instead, use the similar curl command
curl -L 'http://tinyurl.com/32a2gbk/unix.tgz' | tar -zx

A directory “examples' should have been created.

1ls examples/unix

Compression LineEndings MultipleFiles SCP haiku

Escaping MoveCopy Pipes Scripting

How to delete the examples, if required

Firstly, ensure that we are in the home directory (where the examples where
installed).

cd

rm -rf examples

While Ubuntu has all the graphical tools you might expect in a modern operating system, so new
users rarely need to deal with its Unix foundations, we will be working with the command-line. An
obvious question is why the command-line is still the main way of interacting with Unix or, more
relevantly, why we are making you use it? Part of the answer to the first question is that the origins of
Unix predate the development of graphical interfaces and this is what all the tools and programs have
evolved from. The reason the command-line remains popular is that it is an extremely efficient way to
interact with the computer: once you want to do something complex enough that there isn't a handy
button for it, graphical interfaces force you to go through many menus and manually perform a task
that could have been automated. Alternatively, you must resort to some form of programming (Mac
OsX Automator, Microsoft Office macros, etc) which is the moral equivalent of using the command-
line.

Unix is built around many little tools designed to work together. Each program does one task well
and returns its output in a form easily understood by other programs and these properties allow simple
programs to be combined together to produce complex results, rather like building something out of
Lego bricks. The forward to the 1978 report in the Bell System Technical Journal® describes the Unix
philosophy as:

"(i) Make each program do one thing well. To do a new job, build afresh rather than complicate

old programs by adding new features.

(ii) Expect the output of every program to become the input to another, as yet unknown, program.
Don't clutter output with extraneous information. Avoid stringently columnar or binary input formats.
Don't insist on interactive input.

(iii)Design and build software, even operating systems, to be tried early, ideally within weeks. Don't
hesitate to throw away the clumsy parts and rebuild them.

(iv)Use tools in preference to unskilled help to lighten a programming task, even if you have to
detour to build the tools and expect to throw some of them out after you've finished using them."

The rest of this tutorial will be based using the command-line through a “terminal™. The terminal
program can be found by clicking on the Ubuntu button and typing terminal in the search box, as

8 See: M.D. Mcllroy, E.N.Pinson, and B.A. Tague "Unix Time-Sharing System Forward", The Bell System
Technical Jounal, July -Aug 1978 vol 57, number 6 part 2, pg. 1902

9 Terminology that dates back to the early days of Unix when there would be many “terminals”, basically a
fancy screen and keyboard, connected to a central computer.

shown in Illustration 1. Once open, the text size can be changed using the View/Zoom menu options
or the font changed entirely using the Edit/Profile Preferences menu option.

While we are using Linux during the workshop, you may not have access to a machine later or may
not wish to use Linux exclusively on your computer. While you could install Linux as 'dual-boot' on
your computer, or run it in a virtual machine®, the knowledge of the command-line is fairly
transferable between platforms: having Unix foundations, Mac OsX also has a command-line hidden
away: /Applications/Utilities/ Terminal and, with a small number of eccentricities, everything that
works on the Linux command-line should work for OsX. Windows has its own incompatible version of
a command-line but Cygwin http://www.cygwin.com/ can be installed and provides an entire Unix-like
environment within Windows.

Ubuntu 11.10 [Running]
13 «) 1524 R Tim Massingham

® - \'G) terminal _'

Eii Applications

Terminal

QOgP 0 BBlerr
Hllustration 1: Opening a terminal in Ubuntu. A partially obscured terminal is shown at the bottom

right of the desktop.

At the beginning of the command-line is the command prompt, showing that the computer is ready
to accept commands. The prompt is text of the form user@computer:directory$, lllustration 1
having a user called tim in the directory ~ on a computer called coffee-grinder. Having all this
information is handy when you are working with multiple remote computers at the same time. The
prompt is configurable and may vary between computers; you may notice later that other prompts are
slightly different. Some basic commands are shown in Table 1; try typing them at the command-line™*
— press return after the command to tell the computer to run the command.

10 A Virtual Machine (VM) is a program on your computer that acts like another computer and can run other
operating systems. Several VM's are available, VirtualBox http://www.virtualbox.org/ is free and regularly
updated.

11 You'll notice that the output of pwd does not agree with the command prompt, instead printing
/home/ebi. This is because ~is a synonym for /home/ebi, see Table 2 for more details.

http://www.cygwin.com/
http://www.virtualbox.org/

whoami Your username
hostname Name of machine being used
pwd Current directory (Print Working Directory)

uname Operating system (uname -a for the full details).

Table 1: Some basic commands to answer the important questions of life: “who am 1?7, “where am
1?77, and “what operating system am I running?”

All files in Unix are arranged in a tree-like structure: directories are represented as branches leading
from a single trunk (the “root”) and may, in turn, have other branches leading from them (directories
inside directories) and individual files are the leaves of the tree. The tree structure is similar to that of
every other common operating system and most file browsers can display the filesystem in a tree-like
fashion, for example: part of the filesystem for an Ubuntu Linux computer is displayed in lllustration 2.
Where Unix differs from other operating systems is that the filesystem is used much more for
organising different types of files: the essential system programs are all in /b4n and their shared code
(libraries) are in /14b; similarly user programs are in /usr/bin, with libraries in /usr/14b and manual
pages in /usr/share/man.

There are two different ways of specifying the location of a file or directory in the tree: the
absolute path and the relative path from where we currently are (the current working directory, see
pwd, previously) in the filesystem. An absolute path is one that starts at the root and does not depend
on the location of the current working directory. Starting with a / to signify the root, the path

Computer B home [Home
[® Home

Mame ¥ |Size Type Date Modified
K Desktop e %
~ > | bin 150items Folder Sun 04 Mar 2012 16:59:38 GMT
i} Documents — =
3 LIliboot 14items Ffolder Sun 04 Mar 2012 18:00:26 GMT
£ Downloads ;
& Musi » | cdrom Oitems Ffolder Thu 15 Dec 2011 10:50:28 GMT
usic
[l Pictures > | dev 199items Folder Mon 05 Mar 2012 14:28:45 GMT
R > etc 235items Folder Mon 05 Mar 2012 14:28:48 GMT
IH videos
B File System \d M home 1item Ffolder Thu 15 Dec 2011 10:52:26 GMT
& Rubbish Bin v |[# tim 10items Folder Mon 05 Mar 2012 14:29:23 GMT
e » B Desktop Oitems Folder Sun 04 Mar 2012 15:19:25 GMT
» [y Documents Oitems Folder Thu 15 Dec 2011 11:27:58 GMT
=l Browse Net... g
» |[g] Downloads 2items folder Sun 04 Mar 2012 15:11:07 GMT
» M Music Oitems Ffolder Thu 15 Dec 2011 11:27:58 GMT
» mﬂ Pictures Oitems Folder Thu 15 Dec 2011 11:27:58 GMT
3 Jr_! Public Oitems Folder Thu 15 Dec 2011 11:27:58 GMT
[j5] Templates Oitems Ffolder Thu 15 Dec 2011 11:27:58 GMT
> |l tmp 1item Folder Sun 04 Mar 2012 16:14:21 GMT
2 u Videos Oitems Ffolder Thu 15 Dec 2011 11:27:58 GMT
|l Examples 179 bytes desktop configuration file Thu 15Dec 2011 10:52:27 GMT
> ([lib 75items Folder Sun 04 Mar 2012 17:04:07 GMT
» | lib64 1item Ffolder Sun 04 Mar 2012 16:27:18 GMT
> L_ lost+found ?items Ffolder Thu 15 Dec 2011 10:32:50 GMT
3 “ media Oitems Folder Wed 01Feb 2012 11:45:40 GMT
> [mnt Oitems folder Sun 09 O “ngecv salected (containing 235 items)

Lllustration 2: Tree-like structure of the Ubuntu filesystem. Starting at the root '/’, directories are
displayed and the home and home/tim directories have been opened to show its contents,
relationships indicated by indention. /home/tim contains several more directories which could also
be opened.

describes all the directories (branches) we must traverse to get to the file, each directory name
separated by a /. For example, /home/user/Music/TheKinks/Sunnydfternoon.mp3 refers to the file
SunnyAfternoon.mp3 inside the directory TheKinks, which is inside the directory Music, ... , which is
inside on the directory home, which is connected to the root. If you are familiar with Microsoft
Windows, you might notice that the path separator is different: a forward-slash / rather than the
backward-slash \ on Windows; the paths of web pages are also separated by forward-slashes, revealing
their Unix origins as a path to a file on a remote machine.

For convenience, a few directories have special symbols that are synonyms for them and the most
common of these are listed in Table 2.

Symbol Description Notes

/ Root directory Go to top of tree

Current directory

The parent directory Go up one in tree
~ Home directory Synonym for $HOME
“user Home directory for user

Table 2: Special directory names. Most of the these are only have a special meaning when at the
beginning of a path, otherwise they are just a symbol. For example, dir/~/ is the directory ~ inside
the directory dir in the current directory, whereas ~/dir/ is the directory dir inside the home
directory. In both cases the '/' symbols are separators rather than the root directory.

The current location, the working directory, can be displayed at the command-line using the pwd
command. Rather than referring to a file by its absolute path, we can refer it by using a path relative
to where we are: a file in the current directory can be referred to by its name, a file in a directory
inside our working directory can be referred to by directory/filename (and so on for files inside of
directories inside of directories inside of our working directory, etc...). Note that these paths are very
similar to how we describe absolute paths except that they do not start with /; absolute paths are
relative paths relative to the root (alternatively we could read the initial / as “goto root” and consider
them to be relative paths). As shown in Table 2, the directory above the current directory can be
referred to as .. so, if the working directory is /home/user, then the root directory can be referred to
as ../.. (go up one directory, then go up another directory). The symbol .. can be freely mixed into
paths: the directory ezamples below the current directory could have path
ezamples/../ezamples/../examples (needless to say, simply using just ezamples is
recommended).

Commands are just programs elsewhere on the computer and entering their name on the
command-line runs them. Commands have a predicable format:

command -flags target
The command is the name of the program to run, the (optional) flags modify its behaviour and the
target is what the command is to operate on, often the name of a file. Many commands require

neither flags nor target but Unix tools are generally extremely configurable and even simple commands
like date'? have many optional flags to change the format of their output.

12 Some utilities also have parodies, see ddate or sl for example.

As mentioned in Files and directories, there are special directories to contain executable programs
and programs within them can be run by typing their name at the command-line. In general you will
not have permission to place files in these directories and experienced Unix users create their own,
normally ~/bin/, to place programs they use frequently'®. If a program is not in a special directory,
you cannot run it just by typing its name: the computer doesn't know where to find it even if the
program is in the current directory. Programs which are not in special directories can still be run, but
you have to include the path to where it can be found and this can be as simple as . /program
(program is in current directory) to a more complex absolute path to somewhere where shared
programs are kept (see footnote 13 for a hint of how to alleviate this tedium for commonly used
programs) but you can always use the command-line's autocompletion features, see “tab-completion”
below, to reduce the amount of typing needed.

One thing you'll quickly discover is that the mouse does not move the cursor in the terminal. The
terminal interface predates the popularity of mice by decades and alternative methods of efficiently
moving around and editing have been developed, keyboard short-cuts being defined for most common
operations. A few of these are listed in Table 3 but probably the most useful is the tab key to
complete command names and paths in the filesystem, referred to a 'tab-completion'. Pressing tab
once will complete a path up to the first ambiguity encountered and pressing again gives a list of
possible completions (you can type the next letter or so of the one you want and press tab again to
attempt further auto-completion).

Control-a Move to beginning of line
Control-e Move to end of line
Alt-f Move forward one word
Alt-b Move backwards one word
Control-1 Clear screen, leaving current line
Tab Try to automatically complete path

Table 3: Common key bindings for moving around command-line.

Example of tab completion

For the rest of this tutorial, we will assume the user is called ebi
whoami

ebi

pwd

/home/ebi

1s

Desktop Downloads Pictures Templates Videos

Documents examples.desktop Music Public Ubuntu One

Change to a different directory - don't press enter yet

cd D

Pressing tab once has no effect since there are three possible options.
Pressing tab again lists the three options, note that cd D remains on the
command-line for further editing.

13 Creating the directory does not make it special. There is a variable $PATH which is a list of directories in
which the computer looks for programs and the command export PATH="/bin:$PATH appends the new
directory to this list. This command is often added to the file /. bashrc which is a list of commands to be
run automatically every time a new terminal is opened.

cd D<tab><tab>
Desktop/ Documents/ Downloads/

Press e to disambiguate options, and tab again to complete.
cd De<tab>
Gives

cd Desktop/

A record is kept of the commands you have entered, the history command can be used to list
them so you can refer back to what you did earlier. The history can also be searched: Control-r starts
a search and the computer will match against your history as you type; typing enter accepts the
current line, typing Control-r again goes to the next match and Control-g cancels the search. History
can also be referred to by entry number, listed using the history command: entering !n on the

command-line will repeat history entry n, entering !! will repeat the last command.

There are many, often terse, commands for manipulating files and a few of the more useful of
these are shown in Table 4. Many of the commands for Unix have short names, often only two or
three letters, so errors typing can easily have unintended and severe consequences — be careful what
you write because Unix rarely gives you a second chance to correct mistakes. Some Unix machines
have the s1 command to encourage accurate typing.

cd

cp

1s

mkdir

mv

rm

rmdir

Change Directory — change the working directory

Examples:
e cd path # Change working directory to path
* cd # Change to home directory
* cd - # Change to previous directory

CoPy file — copy a file from place to another

Examples:
e cp filel file2 # copy filel to file2
* cp filel directory/ # copy filel into directory. The copy of the

file has path directory/filel

* cp filel file2 directory/ # copy filel and file2 to directory. When
copying multiple files, the destination must be a path to a
directory.

LiSt contents of directory

Examples:
e 1s # List files
* 1s -a # Also show hidden files (those whose name begins with a
period).

e 1ls -1 # Show more information about each file (permissions, owner,
group, time and date of last modification).

MaKe DIRectory — create a new directory
Examples:
¢ mkdir path # Make directory described by path
* mkdir -p directoryl/directory2 # Make the directory described and
all directories leading to it (its Parents) if necessary.

MoVe file — move (rename) a file. Usage is exactly like cp except that the file is moved
rather than copied.

Examples:
e mv filel file2 # Rename filel to file2
* mv filel directory/ # Move file to directory

* mv filel file2 directory/ # Move files to directory

ReMove file — remove (delete) a file. Generally deletion on Unix machines is permanent and
instantaneous; there is no trash directory to save you from your mistakes.
e rm file # Remove file
* rm directory # Fails, can't remove directories
e rm -r directory # Recursively descend into directory and delete
everything, including other directories inside of it (hence the
recursively). This will remove the directory
e rm -f file # Force (ignore warnings) removal of file; ignoring
warnings includes read-only files.

ReMove DIRectory — remove a directory. Only empty directories can be removed (this
includes hidden files).
Example:

e rmdir directory

Table 4: A few commands for manipulating files and brief explanations.

Moving and copying

cd /home/ebi/examples/unix/MoveCopy

pwd

/home/ebi/examples/unix/MoveCopy

1s

alignmnet.fasta read-only test test2

mv alignmnet.fasta alignment.fasta

1s

alignment.fasta read-only test test2

cp alignment.fasta alignment_copy.fasta

1s

alignment.fasta alignment_copy.fasta read-only test test2
Several files can be moved or copied if the destination is a directory
mkdir MyAlignments

mv alignment.fasta alignment_copy.fasta MyAlignments

1s MyAlignments

alignment.fasta alignment_copy.fasta

Removing filles and directories

pwd

/home/ebi/examples/unix/MoveCopy

Some files are read-only (answer ‘‘y’’)

rm read-only

rm: remove write-protected regular empty file "read-only'?y
Some files are not yours

rm /dev/null

rm: remove write-protected regular file ~/dev/null'? y
rm: cannot remove ~/dev/null': Permission denied

rm will not delete directories

rm test

rm: cannot remove “test': Is a directory

rmdir will only delete empty directories

rmdir test

rmdir: “test': Directory not empty

1s test

afile

rm test/afile

rmdir test

1s test2

afile subdirectory

rm -r (-r = ‘‘recursive’’) deletes everything, including subdirectories
Danger - a mistake using this option can result in a lot of work being
accidentally deleted

rm -r test2

There are many circumstances when it is preferable for symbols not to have a special meaning, the
most common example being when the file name contains a space®. The character in question can be
“escaped” by prefixing it with a '\' to remove its special meaning so, for example: / is the root

14 A space is a special character in the sense that it is interpreted as a break between command-line options.

directory but \/ is a file called '/".

Escaping examples

pwd

/home/ebi/examples/unix/Escaping

1s

my sequences.fasta sequence_directory

Incorrect version. Space in name treated as command-line argument separator.
‘“‘my’’ and ‘‘sequences.fasta’’ treated as separate files.

mv my sequences.fasta sequence_directory

mv: cannot stat "my': No such file or directory

The wrong file has been moved

1s sequence_directory

sequences.fasta

Correct version, the space is escaped to remove its special meaning.
mv my\ sequences.fasta sequence_directory

1s sequence_directory

my sequences.fasta sequences.fasta

If you use ‘‘tab completion’ to complete names, spaces and other characters
are automatically escaped for you.

Files beginning with a . character are hidden by default and will not appear in the output of Is or
equivalent. General hidden files are those important for the computer or programs, containing
configuration information not intended for the user.

pwd
/home/ebi
Show ordinary files
1s
doc-samples examples
Show all files. Note the special directories . and .. are visible.
1s -a
.bash_history .bashrc .directory .mpd.conf examples

.. .bash_logout .config .kde4 .ssh
.Xauthority .bash_profile .dbus .local doc-samples
Show only hidden filles. For more details, see Dealing with multiple files.
1s -d .*

.Xauthority .bash_logout .bashrc .dbus .kde4 .mpd.conf

.bash_history .bash_profile .config .directory .local .ssh

All files and directories have a set of permissions associated with them, describing who is allowed to
read or write a file. There are three basic permissions: read r, write w and execute x. The meanings
are fairly obvious other than execute, which has two meanings depending on context: for normal files,
execute is just a marker to show that the file contains executable code (i.e. is a program) but execute
permission is also needed to open a directory and see the files is contains. There are three categories
of user: owner u, group g, and other o and the permissions for each file are described as a string of
nine characters, three for each user category. The triplet for each category is either a letter 'rwx' if
users in that category have the corresponding permission or '-'if they don't. The permission string
rwxr-x--- means that the owner has permission to read, write or execute, users in the same group
have read and execute permission and other users have no permissions.

Which groups do I belong to?

pwd

/home/ebi

id

uid=521(ebi) gid=100(users) groups=6(disk),7(1p),11(floppy), ©
17(console),27(video) ,80(cdrw),100(users),521(ebi), 1002(boinc) €
,65533(nogroup) ,65534 (nobody)

User ebi has ID 521, in group users by default (Group ID 100). ebi is also a
member of several other groups, giving access to features of the computer

that would otherwise be denied.

List some files and permissions. The initial 'd' means that both doc-samples
and examples are directories. The owner of these files is ebi and they are

part of the users group.

mkdir test

1s -1

drwxr-xr-x 14 ebi users 352 Mar 22 14:02 doc-samples
drwxr-xr-x 3 ebi users 72 Mar 22 17:42 examples
drwxr-xr-x 2 ebi users 48 Mar 26 14:09 tests

ebi has read, write and execute permission for both directories; users in the
group users have read and execute permission, as do any other users.
Remove execute permission for all users (a means u, g and o)

chmod a-x test

Now we can't open the directory.

cd test

-bash: cd: test: Permission denied

Give ourselves permission to enter directory.

chmod u+x test

This now succeeds but nobody else will be able to enter

cd test

Make all files in and below a directory read-only. The -R flag means
recursively descend into all directories inside test.

chmod -R a-w test

As the owner of a file you can change its permissions to be anything and some programs do this for
you automatically, giving the impression that the permissions have been ignored. Running rm -f is
possibly the only time you might run into this behaviour: by default rm will prompt to remove write-
protected files but the -f (force) flag turns tells it not to bother asking and just remove the file.

Often, especially when running scripts or organising files, it is desirable to deal with multiple files at
once. Rather than typing each file name out explicitly, we can give the computer a pattern instead of
a filename: all filenames are checked against the pattern and it is automatically replaced by a list of
matching files before running the command. Patterns are just filenames containing symbols that have
a special meaning, for example: * means match anything, so a*b is a pattern that matches any
filename beginning with a and ending with b including the file ab. Table 5 contains a list of special
symbols useful for constructing patterns.

Symbol Description

* Match anything, including match “nothing”
* Match a '*' character
? Match any character exactly once (excludes matching “nothing”)
[abc] Match exactly one of 'a', 'b' or 'c'
[~abc] or [!'abc] Match any character but 'a', 'b' or 'c'
[c-y] Match any character between 'c' and 'y'. Note: [-a] is defined to mean

a match with '-' or 'a'.

{patterni,pattern2} Combines the result of patternl and pattern2 together. Note if a file is
matched by patternl and pattern2, it is returned twice.

Table 5: Special symbols for filenames. As with the \x example in the table, any of these symbols
can be prevented from having a special meaning by “escaping” them with a "\'.

Organise files by type. When moving or copying multiple files, the final
argument must be a directory not a file.
pwd

/home/ebi/examples/unix/MultipleFiles
mkdir Fasta Tree Sequences

cp *.fasta Fasta

cp *.tree Tree

Copy both Fasta and Fastq format files. Any other files with the suffix .fast?
or .f7 would also be matched, .fz for example which is occasionally used for
compressed fasta files.

cp *.fast? *x.f? Sequences
A more restrictive form, only matching fasta and fastq format
cp *.fast[aq] *.f[aq] Sequences

As mentioned above, pattern matching occurs before a command is run and the pattern is replaced
by none, one or more matches. The command never sees the pattern, just the results of the match
and this can have unintended consequences.

Why we used the -d flag for 1s in the previous section

pwd

/home/ebi

cd

Now in home directory. The pattern is expanded to all filles and directories
matching, including the . and .. directories. When 1ls is run, it gets the
directory names as arguments and so lists their contents.

1s .x%

.Xauthority .bash_logout .bashrc .mpd. conf

.bash_history .bash_profile .directory

doc-samples examples

cilia ebi giorgos jon natassa pet spyros tkill
costas fix ioanna katerina nodas pierre tereza voula
elena gioannis jacques maria panagiotis pvavilis thanos

. etc

The -d flag for 1s stops it from listing the contents of directories and
instead just prints their names.
1s -4 .x*

.Xauthority .bash_logout .bashrc .dbus .kde4 .mpd.conf

.bash_history .bash_profile .config .directory .local .ssh

Unintended consequences can be dangerous. Take special care when using patterns with
commands. The following example is a “joke" played on inexperienced Unix users.

This example can be dangerous - BEWARE

pwd
/tmp
Create a file called -rf *
touch -- -rf\ \x
Typing rm -rf * is a really bad idea. * matches everything, r means
recursively descend down all directories matched, and f forces deletion even
if the file is important or write-protected.
Safely delete file. There are other ways.
rm -- '-rf x!
The quote marks '-rf *' stop the filename being interpreted as a pattern. The
-- prevents rm (and, more generally, most commands) from interpreting
anything after it as a flag, so -rf is just a name not the recursive and force
flags.

From early on in its development, Unix was designed to run multiple programs simultaneously on
remote machines and support for this is integrated into the command-line. An important distinction is
that between foreground jobs and background jobs: a foreground job temporarily replaces the
command-line and you cannot enter new commands until it has finished, whereas a background job
runs independently and allows you to continue with other tasks. Only foreground jobs receive input
from the keyboard, so interactive programs like PAUP* should be run as foreground (although you
could set up a compute intensive analysis, background it and continue with other tasks while it is
running. Later, when the calculations have finished, the program can be made foreground again so
interaction can continue). Background jobs still send their output to stdout, your terminal unless you
have redirected it somewhere else, which can be confusing if you are running multiple background jobs
— their output will be interleaved without any indication of which line came from which job.

Control-c Cancel (kill) foreground job

Control-z Pause foreground job
jobs List current jobs (started in this command-line)
kill %n Kill job number n
killall name Kill all processes called name
ps Show all running processes (distinct from jobs) regardless of how they

were started

fg /n Bring job number n to foreground
bg /n Run job number n in background
program & Start program in background
nohup program Run program in background so it will not stop if you log out. stdout

and stderr are redirected to the file nohup.out. Advanced users might
like to look at screen instead.

Table 6: A few commands and key combinations for job control.

As hinted in Table 6, there is a difference between a job and a process. A process is a single
program running on the machine, each of which is uniquely numbered (a pid, Process ID). You can list
all the processes you are running, including the command-line itself', using ps (or ps -a if you want to
see what all the other users of the machine are doing). The command-line itself is just another
process running on the computer, albeit one specially designed for starting, stopping and manipulating
other processes. Processes are the fundamental method of keeping track of what is running on the
computer. Jobs, on the other hand, are things entered on the command-line and many include several
programs logically connected together by pipes (see In, out and pipes for details) to achieve a task.
The command-line splits the jobs into several processes and runs them, possibly simultaneously.

Time a cup of tea. Computer sleeps for 300 seconds and then prints Tea
brewed.

sleep 300; echo 'Tea brewed!'

Tea brewed!

Backgrounding does not have the effect you might think. The following

backgrounds the echo but not the sleep; backgrounding the sleep would have

the efflect of immediately running both the programs. Similarly, interrupting

the sleep with Control-z will immediately allow echo to run.

sleep 300; echo 'Tea brewed!' &

Correct method of backgrounding: group programs using brackets and background
entire group. The space between the bracket and the command is important.

{ sleep 300; echo 'Tea brewed!'; }&

Where possible, Unix commands are written as filters: they read from input, manipulate the data
and write the output. This might sound trivial, tautologous even, but it enables simple commands to
be combined to produce complex results. Every command reads from stdin and writes to stdout, by
default stdout is connected to the current command-line, so results are displayed on the screen, but
it can be redirected: > filename redirects stdout to the file specified for later perusal. Rather than

15 Generally called bash, the Bourne Again SHell, a pun on the original Unix shell written by Stephen Bourne.

redirecting to a file, a pipe can be used to connect stdout of one command to the stdin of another
— by chaining many simple commands together, complex transformations of the input can be achieved.

Following is an advanced example, showing how a complex output can be achieved using a series of
smaller steps. You don't know sufficient yet to understand everything in this example but try to work
through it and see what each step is doing. The man pages for each command (see Getting help)
might be useful.

An advanced example using pipes. At the command-line, a pipe is represented
by the character |.

pwd

/home/ebi/examples/unix/Pipes

The compressed file transcripts.fasta.gz contains the fasta

sequences of all transcripts of Homo sapiens chromosome 22

(from Ensembl release 57). Want to count how many transcripts

there are for each gene.

First cat reads the file and writes it to stdout, pipe into the

decompression program gunzip

cat transcripts.fasta.gz | gunzip |

Another pipe into grep, a tool that extracts lines matching a

certain pattern (here, those starting with a >). The pattern to

match is described using a Regular Expression - a very important

concept than underlies many Unix tools but too advanced for this

tutorial.

grep '~>' |

The sequence names in the fasta file are of the form

>GENE_ID|TRANSCRIPT_ID

cut splits a line to bits. Use | as the delimiter and we want

the first field. The single quotes prevent the '|' being

interpreted as a pipe by the command-line.

cut -d '|' -f 1|

Sort and count the unique entries (uniq requires sorted input)

Output to file transcript_counts.txt

sort | uniq -c > transcript_counts.txt

Or on one line, redirecting stdin in a similar way to how we redirected

stdout before. The < transcripts.fasta.gz connects the stdin of gunzip to the
file transcripts.fasta.gz rather than using cat to read it and output it into
a pipe.

cat transcripts.fasta.gz | gunzip | grep '*>' | cut -d '|' -f 1| €

sort | uniq -c > transcript_counts.txt

The aim of compression is to make files smaller, useful for both saving disk space and making it
quicker to send files over the internet!® Simply, compression programs look for frequently repeated
patterns in the file and remove this redundancy in a manner that can be undone later. Text files tend
to compress very well, 100MB worth of Wikipedia being compressed into less than 16MB', and, in

16 Some types of connection over the internet have the ability to transparently compress files before sending
and uncompress at the other end. Some web servers implement this but the only important example for us is
scp / sftp which can be given the -C option to request compression. E.g. scp -C sequences.txt
auser@anothermachine.org: /home/ebi/

17 See The Hutter prize http://prize.hutterl.net/

http://prize.hutter1.net/

particular, biological sequences tend to be very compressible since the size of the alphabet of
nucleotides or amino acids is small compared to the total computer alphabet of all lower-case and
upper-case characters, numbers, symbols, etc.

There are two common tools for compressing files: gzip and bzip2 with their respective tools for
uncompressing: gunzip and bunzip2. gzip is the de-facto standard; bzip2 tends to produce smaller
files but takes longer to compress them. On the Windows platform, the Zip'® compression method is
favoured and many Unix platforms provide zip and unzip tools to deal with these files. Non-Linux
Unix platforms, Mac OsX for example, have older tools called compress and uncompress that are
rarely used any more. Support for compress'd files on Linux can be patchy, for example: a machine |
have access to has a compress manual page but no actually tool installed. A final method to be aware
of, that is becoming more popular, is 7-zip (7za) which can produce smaller files than all the above
methods, again at the expense of taking longer to compress. A list of file suffices that can be used to
identify what files are compressed using what method is provided in Table 7.

pwd
/home/ebi/examples/unix/Compression
1s

sequences. fq

Gzip'ing a file

gzip sequences.fq

1s

sequences.fq.gz

Unzipping the file
gunzip sequences.fq.gz
1s

sequences.fq

Using bzip2

bzip2 sequences.fq

1s

sequences.fq.bz2

As part of a pipe, reading from stdin and writing to stdout
cat sequences.fq.bz2 | bunzip2 | gzip > sequences.fq.gz

1s

sequences.fq.bz2 sequences.fq.gz

Compression works better if files are combined and then compressed together, rather than
compressing them individually, since this allows the compression program to spot repeated patterns
between the files. On Unix, the process of packing/unpacking several files into / from a single file has
been historically separate from the process of the compression, in keeping with the philosophy of
having little tools that do one thing well. The Unix tool for packing and unpacking files is tar “Tape
Archiver”, the odd name because its heritage goes back to 1979 when writing files to magnetic tape
was a common method of storage.

1s

chimp.fasta human.fasta macaque.fasta orangutan.fasta

Pack into single file. The suffix is your responsibility. 'c' means create, and
'f' means that the next argument is the filename to write to.

tar -cf sequences.tar *.fasta

Note that the original files are untouched

18 Popularised and often known as Winzip (http://www.winzip.com/) but originally invented by Phil Katz as
pkzip and now handled automatically by Windows and Mac OsX.

http://www.winzip.com/

1s

chimp.fasta human.fasta macaque.fasta orangutan.fasta sequences.tar
Delete all sequences

rm *.fasta

'x' means extract

tar -xf sequences.tar

1s

chimp.fasta human.fasta macaque.fasta orangutan.fasta sequences.tar

Over time, the features of tar have increased to make it more convenient and modern versions are
now capable of packing and compressing files.

1s
chimp.fasta human.fasta macaque.fasta orangutan.fasta sequences.tar
Pack and gzip sequences simultaneously

tar -zcf sequences.tgz *.fasta

List the contents without extracting
tar -ztf sequences.tgz

chimp.fasta

human.fasta

macaque.fasta

orangutan.fasta

More recent versions of tar can also bzip2 files
tar -jcf sequences.tbz2 *x.fasta

tar -jtf sequences.tbz2

chimp.fasta

human.fasta

macaque.fasta

orangutan.fasta

Compression Uncompression®? Suffix Tar'd Suffix
gzip gunzip .82z .tgz
bzip2 bunzip2 .bz2 .tbz2
compress uncompress Z No convention, .tar.Z
zip unzip .zip Not needed
Tza 7za e archive.7z .7z Not needed

Table 7: File suffices for common compression programs. When combined with tar to compress
multiple files, often the full suffix . tar. sufiz is shortened to that given above. zip and Tza “7-zip”
have a Windows heritage and have built methods to combine multiple files together, so are rarely
used in conjunction with tar. The file tool can also be used to determine file type, e.g: file
file.unknown.sufix . See man file for details.

Why use a remote computer? There are many reasons: Firstly, central computing resources tend to

19 The compression programs actual do both compression and decompression. These names are convenience
synonyms for the compression program and whatever command-line options it requires to flip it into
decompression mode.

be much larger, more reliable*® and more powerful than your laptop or PC — if you need to do a lot of
work, or use a lot of data then you may have no option but to use a bigger computer. If you have a
job that will take a long time to run, Bayesian phylogenetic methods being one example, you may not
want to commit to leaving your personal computer for long enough (and you really trust your
colleagues not to turn it off?) whereas central facilities are permanently on and have batteries to
prevent small glitches in the power supply from affecting the computers. Lastly, and most importantly,
central computers tend to have much more rigorous and tested policies for backing up data — Do you
backup? Is it kept in a separate physical location from the original? When was the last time you
checked that the backup actually worked?

Secure SHell is a method of connecting to other computers and giving access to a command-line
on them; once we have a command-line we can interact with the remote computer just like we
interact with the local one using the command-line. SSH replaces an older method of connecting to
remote computers called telnet, which sends everything — including your password — as normal
undisguised text so anyone can read it. Never use telnet unless you know what you are doing and
you have no other option; similarly, never use FTP "File Transfer Protocol' for transferring files.

Connect to a remote computer, here we connect as the user auser to the

computer with address anothermachine.org

You will need an account on another computer to get the most out of this
exercise.

ssh auser@anothermachine.org

Password:

You are prompted for a password and then have a command-line
[auser@anothermachine ~]1$

Type exit to leave.

If the username is left off, ssh assumes that the remote username is the same
as the local one. Depending on how the local network is set up, machines on
it might be referred by their names rather than their full address.

This might work and saves a lot of typing

whoami

ebi

ssh anothermachine

As well as keeping communications between your computer and a remote computer secure, SSH
also allows you to verify that the remote computer is the computer it claims to be — no point keeping
traffic secure if you send it to the wrong place — or to prevent someone sitting in the middle of the
connection listening to each message then passing it on, pretending to each side to be the other®. If
verification fails, you will be warned with a message like:

deldddddedddddeeddddeeeddddeecdddeeeddddeeddddeeeddddeeddddd

20 There is world of difference between server-quality hardware and stuff on your desk. Battery backup,
Uninterruptible Power Supplies, are one example, servers also tend to have redundant components and
memory that can detect and correct errors. At the top end, servers can detect and isolate faulty parts, report
the problem and continue running: often the first time companies know that a fault occurred is when an
engineer turns up with a replacement part.

21 Known as a Man-in-the-Middle attack http://en.wikipedia.org/wiki/Man-in-the-middle attack . Both sides
think they are communicating with the other but are actually communicating with an intermediary who
copies all messages then forwards them on. The method use to verify identity, without possibility of forgery,
and even if someone else can copy and manipulate all messages is very interesting and has many other uses
like to tell if a message has been send from who it says it has and whether or not it has been tampered with;
see http://en.wikipedia.org/wiki/Public-key _cryptography and
http://en.wikipedia.org/wiki/Digital _signature for details.

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Man-in-the-middle_attack

© WARNING: POSSIBLE DNS SPOOFING DETECTED! @
dclcleleleledddccldeedddcdeeedddcdeeeddddedddeedddedeeeddecddeeeddd

The RSA host key for gate.ebi.ac.uk has changed,

and the key for the corresponding IP address 193.62.197.203

is unknown. This could either mean that

DNS SPOOFING is happening or the IP address for the host

and its host key have changed at the same time.
dclcleleleledddclcldeedddcdeeeeddcceeeddddedeeddddeddeeeddecdedeeddd

e WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
dclcleleleledddclcldeedddcdeeedddedeeeddddedddeddddedeeedddcddeeeddd

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
76:55:ba:23:87:£8:34:ca:d0:28:80:5d:c6:fb:£9:4f.

Please contact your system administrator.

and the computer will refuse to connect. By far, the majority of these warnings are caused by inept
computer administration rather than malice — someone has upgraded the other machine incorrectly so
it appears to be a different computer; if you are sure it is safe, the warning can be dealt with by
deleting the appropriate line for the computer from the ~/.ssh/known_hosts file.

In keeping with its heritage of terminals to remote computers, graphical programs can also be run
on remote machines but expect pauses unless you have a low-latency internet connection. The system
that enables this is called the X Windows system? (or just X, or X11), hence the use of the -X flag
on following example, and requires software on your local computer that understands the drawing
instructions being sent. Linux computers use such software by default for display, Mac OsX comes
with software that can be used (and is started automatically by ssh in the following example). On
Windows, the Cygwin software provides the required functionality.

Connect to anothermachine, using the -X flag to enable X11

ssh -X auser@anothermachine.org

This gives us a command-line on anothermachine. Start a graphical

application; the application that appears is running on anothermachine
not your local computer.

gtk-demo &

Get another command-line on anothermachine

xterm &

As shown in Nice examples, it is possible to transfer files between computers using SSH alone but
this is not recommended since more friendly interfaces exist.

pwd

/home/ebi/examples/unix/SCP

Secure CoPy, scp, is version of cp

Copies transcripts.fasta.gz to anothermachine.org, into the directory

“ebi/examples/ Paths on the remote machine could also be specified absolutely,
like.

auser@anothermachine.org: /home/ebi/examples®.

22 The successor to the W Windows System, if you are wondering where the X came from.
23 This is not too dissimilar to how remote files (web pages) are described on the web, which look like
http://username@computer. address:portnumber/path/to/file. The portnumber and username

scp transcripts.fasta.gz auser@anothermachine.org:examples

Secure FTP, sftp, acts like an older method for transferring files and is more
useful for transferring multiple files or if you cannot remember the full
remote path.

sftp auser@anothermachine.org
Connecting to anothermachine.org...

Password:

sftp>

Have something that looks like a command prompt. Type help for a list of
commands that it understands. The cd, 1s, mkdir, pwd, rm, put and get

commands (and their ¢‘local’’ variants lcd, 1lls, lmkdir and lpwd) are of

especially useful. For multiple files, there are mput and mget commands.
Type bye, exit or quit to leave.

bye

Of course, there are many graphical file transfer programs available. Without recommending
particular programs, Cyber-duck http://cyberduck.ch/ for the Mac OsX and WinSCP
http://winscp.net/ for Windows appear to good options but there are many more. Alternatively, under
Mac and Unix, it is possible to mount directories on remote computers so there appear to be local;
search for sshfs for details.

When transferring files, silent errors are extremely rare but can happen and so we'd like to be able
to verify that the file received is identical to the one sent. Short files could be checked by eye but this
can't be automated without transferring the file again (which might also get an error). A common
technique to verify correct transfer is to calculate the md5 (Message Digest algorithm 5) of both files
and compare these values. The md5 is short string of characters that identifies a file and two different
files are extremely unlikely®* to share the same string — if a file changes, its md5 will (very probably)
change and so we know that that a change occurred. It is extremely difficult to deliberately create two
files that have the same sum.

Calculate the md5 of a file

pwd

/home/ebi/examples/unix/Pipes

md5sum transcripts.fasta.gz

85e2bf58fI544a4f2d8b0ebaca37b726 transcripts.fasta.gz

Repeat on remote version of file and check the md5's agree. If the remote
machine is Mac, on which the tool is called md5 rather than md5sum

md5 transcripts.fasta.gz

MD5 (transcripts.fasta.gz) = 85e2bf58ff544a4f2d8b0e5aca37b726

Was the examples files we downloaded the one intended?
If you're mdbsum doesn't match the one below, the examples file has changed.
wget -0 - ‘'http://tinyurl.com/32a2gbk/unix.tgz' | tar -zx

b00fbf51d3c7f2c5113de3be330c25a1 -

More rarely, you may come across SHA sums, shasum on both Unix and Mac computers, which are
very similar to md5's but have an even smaller chance that two files share the same string.

are almost never used in practise so tend not to be explicitly written. If you examine your spam email closely,
you will occasionally see links using a username to hide its true destination:
http://www.bank. com@uuww. dodgysite.com/

24 The chances of two non-identical random files having the same md5 is about 3.4 x 10%. When checking
large numbers of files, the Birthday Paradox (http://en.wikipedia.org/wiki/Birthday problem) occurs and
the chance that there are two files in the set with the same md5 decreases rapidly but will still be small
enough for realistic uses.

http://en.wikipedia.org/wiki/Birthday_problem
http://winscp.net/
http://cyberduck.ch/

General help with Ubuntu has already been covered in “Acclimatisation”, alternatively just find
someone to ask.

As with everything else, the web is a verdant source of good, bad and down-right weird® tutorials.
Unix is general very well documented, although the documentation is generally aimed at experienced
users. The manual pages follow the same format, starting with a description of what the command
does and a summary of all its flags; optional flags are enclosed in square brackets. Next is generally a
full description of the command and detailed descriptions of what each flag does. Sometimes there is
also a section containing examples of usage, Mac OsX is generally very consistent about this but
Linux derivatives can be a mix.

Look at manual page for man
man man
man (1) man (1)

NAME
man - format and display the on-line manual pages

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]
[-M pathlist] [-P pager] [-B browser] [-H htmlpager] [-S section_list]
[section] name ...

DESCRIPTION
man formats and displays the on-line manual pages. If you specify sec-
tion, man only looks in that section of the manual. name is normally

You can use the arrow keys to move up and down the man page, alternatively
the page-up and page-down can be used to scroll entire pages at once (in some
terminals you'll have to hold shift and press page-up/down to get the same
effect) . Pressing 'q' quits the viewer and returns back to the command-line.

H OHF H O H i

So far, we have only used the command-line to run other programs and to chain them together to
achieve more complex results. The command-line is a programming language in its own right and we
can write little programs to automate common tasks; often this referred to as scripting rather than
programming although the distinction is not really relevant. Obviously learning to program is not
something that can be taught in an hour or two, even experienced programmers take several days to
become productive in a new language, so this section can give little more than a taste of what is
possible and hopefully show how you could save a lot of time. If you are doing similar things to large

25 Try Why's Poignant Guide to Ruby http://www.ember.co.nz/files/resources/whys-poignant-quide-to-
ruby.pdf or Learn You a Haskell for Great Good http://learnyouahaskell.com/ for a taste of just how strange
programming tutorials can get. | recommend neither of these languages: python http://python.org/

is a good choice for someone with little programming experience starting out in bioinformatics, especially in
conjunction with the biopython http://biopython.org/ libraries.

http://biopython.org/
http://python.org/
http://learnyouahaskell.com/
http://www.ember.co.nz/files/resources/whys-poignant-guide-to-ruby.pdf
http://www.ember.co.nz/files/resources/whys-poignant-guide-to-ruby.pdf

number of files, many sequences for example, scripting can save you a lot of time and allow you to get
on with something else rather than repetitively typing variations on the same thing with inevitable
mistakes (think about how you would rename 100 files, or change the format of thousands of gene
alignments so they are compatible with your phylogeny program). As with everything, there are many
tutorials available on the web and a search for bash scripting tutorial or bash scripting introduction will
yield many examples of varying completeness and comprehensibility.

The first thing to introduce are variables. A variable is just a name for another piece of data, a
useful analogy is that of a labelled box: every time we see the label, we replace it with the contents of
the box. The ability to manipulate variables, changing the state of the computer, have many uses and
are considered fundamental to imperative programming but we'll just introduce two useful cases:
shortening common directory paths and performing the same operations on many files. In bash
scripting, variables are referred to as $NAME. There are some restrictions on the punctuation that can
be part of a name and it cannot start with a number.

Some variables are already defined for us. We have already met $HOME which is
a variable containing the path to your home directory

echo $HOME

/home/ebi

The other defined variables can also be listed using the env (environment)

command. Few of these relevant to us. The output is of the form:

NAME=contents

env

PYTHONDOCS_2_6=/usr/share/doc/python-docs-2.6.4/html/library
LESSOPEN=|lesspipe.sh /s

AMANDA_GROUP_GID=87

R_HOME=/usr/1ib64/R

The data files for blast are in /bio_data/blastdb
BLASTDATA=/bio_data/blastdb

echo $BLASTDATA

/bio_data/blastdb

List contents of directory /bio_data/blastdb

1s $BLASTDATA

GO_db ego fish_models_49 ncbi nt uniprot
SeaBream_BACend elena jacques ncbi_taxa swissprot vector

data est mge nr tereza

Variables are only accessible from the current command-line. Programs you

start from it, other scripts for example, will not be able to see them; they
can if declared using export.

export BLASTDATA=/bio_data/blastdb

A variable can be the name of a file and we can write things at the command-line using the
variable instead of the name explicitly — change the variable and we run exactly the same commands
on a different file. One way to take advantage of this this would be to set the variable to one of
several files and use the history to repeat a set of commands. Of course, if the commands write their
output to a file then that would have to be renamed each time otherwise the output for each file
would be written over that for the previous. Shell scripting provides an alternative: the computer can
be told to set the variable to each of many file names in turn and the value of the variable can be
edited automatically to provide the name of a unique output file.

FASTAFILE=sequences.fasta

The special form ${VARY/sufix} is the variable with sufix removed from it.

There is an equivalent but less useful version for prefixes ${VAR##prefix} and
many others.

PREFIX=${FASTAFILE/’.fasta}

echo $PREFIX

sequences
This behaviour can be used to loop through and manipulate many files.

pwd

/home/ebi/examples/unix/Scripting

This example requires the muscle alignment program to be installed. The

following will only work on Ubuntu and a few other versions of Linux.

Like a lot of software, there is 'package' of muscle ready to be installed

on your computer. The program that downloads and installs packages is called
apt-get. The program sudo ('super-user do') takes its command-line options

(the name of another program) and runs it with permission to make changes to
your computer.

You will need to be connected to the intermet for this to work.

sudo apt-get install muscle
Reading package lists... Done
Building dependency tree

Reading state information... Done
The following NEW packages will be installed
muscle
etc .. You may need to type 'y' to confirm that you want to install the
package
1s

ENSG00000000971 . fasta ENSG0O0000107593.fasta ENSGO0000161326.fasta
ENSG00000002745. fasta ENSG0O0000107643.fasta ENSG00000161544.fasta
ENSG00000003096. fasta ENSG00000107859.fasta ENSGO0000161940.fasta
ENSG00000003987 . fasta ENSGO0000107863.fasta ENSG00000162009.fasta
ENSG00000003989. fasta ENSG0O0000107890.fasta ENSG00000162402.fasta

+ lots more. How many? Use wc (Word Count), -1 means count lines instead of
words (see man wc for more details).

1s *.fasta | wc -1

1015

Use a for loop to go through all 1015 fasta files in a directory and align
them.

mkdir output

Remember that *.fasta expands to the name of every file ending in .fasta

The for loop sets the variable I to the name of each fasta file in turn and
runs all the code between the do and done statements.

for I in *.fasta

The variable I holds each file in turn. Get prefix

PREFIX=${I%%.fasta}

New varible holding name of output file, ends in .align
OUTPUT=$PREFIX.align

cat the file whose name is held in variable $I into muscle to align it and
send output (the alignment) to the file whose name is in variable $0UTPUT.
cat $I | muscle -maxiters 2 > output/$0UTPUT 2>/dev/null

Update us on progress

echo Alignment of $I written to output/$0UTPUT
Go back to beginning and repeat using the next file.

done
Takes a few minutes but we have aligned more than a thousand sets of
paralogues.

A common Unix idiom is to place frequently used sets of functions into a file, called a script, for
reuse and so preventing errors retyping them in. Writing a file also means that complex scripts with
many steps can be tested before committing to running them over many files, something that could
potentially take days if we are dealing with large numbers of genes. Scripts can be written and
modified in any common editor but must be saved in text format; nano is a good basic editor that is
fairly intuitive to use but there are many others more specifically designed with programmers in mind.
Alternatively you could use gedit, a program more like Notepad on Windows (click the Ubuntu
button and search for gedit; entering gedit & at the command-line will also work).

Create a simple script, one that just prints a variable. The single quotes

here are very important - anything enclosed in single quotes is not processed
by the command-line and treated exactly as it was typed it. In particular,

variable names are not replaced by what they refer to.

pwd

/home/ebi/examples/unix
echo 'echo $VAR' > script.sh

Make the script executable
chmod +x script.sh
VAR="Hello"
A 'dot' followed by a name runs a script at the current command-line, as if
you had typed it in yourself.
script.sh
Hello
We've made the script executable, so we can run it. This starts a new
command-line to run the program.
./script.sh
Nothing happened. This is because the script was run as a separate program
and we did not export the variable we created.
export VAR="Hello"
./script.sh
Hello
Scripts can also have command-line arguments of their own which can be
accessed using the special variables $@ (all arguments), $1 (the first
argument), $2 (the second argument), etc
cat > script.sh
echo $@
echo $1
echo $2
control-d to end input

./script Hello Goodbye
Hello Goodbye

Hello

Goodbye

Even after the standard alphabet for computers was established (ASCIlI — American Standard Code
for Information Interchange) there was no agreement about how to how to indicated the end of a line.
ASCII provides two possibilities: line-feed '"\n' and carriage-return '\r', based on how old type-writers
and tele-type terminals used to work: a carriage-return moves the carriage, the position to print the
next character at, back to be beginning of the line and line-feed moves the paper one line down but
doesn't change where the carriage is. On Unix a '\n' character is taken to mean “line-feed and
carriage return” and this is used to separate lines of text. On Windows, lines are separated by the pair
of characters '\r\n' (in that order) and old versions of Apple operating systems (prior to OsX) use
"\r' to separate lines. The situation on Mac OsX is more complex since it must deal with both its
Mac and Unix heritage; officially '\n' now separates lines in files but programs have to be able to deal
with both conventions.

Unix provides a simple tool, tr ‘‘translate’’, to change the line endings in a
text file to a Unix compatible ones. tr either translates one character into

another or deletes a specific character.

01d Mac to Unix: The first argument is the character to convert and the second
argument is the character to convert it into.

pwd

/home/ebi/examples/unix/LineEndings
cat chimp_mac.fasta | tr '\r' '\n' > chimpl.fasta

Windows to Unix: The -d flag means delete the characters in the second

argument.

cat chimp_win.fasta | tr -d '\r' > chimp2.fasta

Look at md5 for files. Note that chimpl.fasta and chimp2.fasta are identical,
whereas the other two files are different.

md5sum *.fasta

6650a16886a6c8f8cbf878edbc29804a chimpl.fasta
6650a16886a6c8f8cbf878edbc29804a chimp2.fasta
6e611e58b3eb5dc7a4689fab0d8cf938d chimp_mac.fasta
f04ffe97cb945c23c46d751d7281b9e6 chimp_win.fasta

To further complicate things, some methods of transferring files between machines try to
automatically convert the line endings for you. This is generally a mistake. Specifically an old file
transfer method called FTP “File Transfer Protocol” has two modes: text and binary, text mode will
attempt to translate line endings. Unix platforms default to binary and are safe, the only case where
you need to be careful is transferring files from Windows using the command-line FTP application. If
you transfer a binary file over FTP in text mode, the received file will be corrupted
irretrievably. If in doubt, see Transferring files for how to verify that your file has transferred
correctly.

If you've managed to read through to here, you're probably thinking: a) that's complicated, and b)
why haven't | noticed this? The answer is that it used to cause problems in the past but programmers
are aware of the issues nowadays and programs tend to do the right thing. Some programming
languages like Perl even deal with these problems transparently so even programmers don't need to be
aware of them any more.

Here follows some examples of using the command line. You should be able to work out what most

of them are doing, although you may have to refer to the relevant man page to determine what a

specific option does.

Most of the following examples use "regular expressions' to extract specific bits of text fro

m a

large file. In a nut shell, regular expressions are a way of describing patterns to be matched and
programs are available to search through a file and print the matches (grep) or search, edit and
replace the matches (sed). Understanding and writing regular expressions are beyond the scope of this

tutorial but can quickly save you a lot of time and effort. A large part of the popularity of the

language PervL (Practical Extraction and Report Language®) in bioinformatics is due to the ease that

regular expressions can be used within it.

Reverse complement sequences, assuming one sequence per line
rev sequences.txt | tr 'ACGTacgt' 'TGCAtgca' > rc_sequences.txt

Transfer files without using a special program

tar -zc *.fasta | ssh auser@anothermachine.org "cat | tar -zx"

How many sequences do we have in a file?

Uses grep to match lines beginning with >

The initial caret ~ means match the beginning of a line.

grep '~>' sequences.fasta | wc -1
Extract sequence names from Fasta format file
grep '~>' sequences.fasta | cut -c 2-

Extract names from a phylogenetic tree

Uses grep to match either an open-bracket or a comma and then matches all

characters until a colon, close-bracket or comma is found. The square bracket
mean match any character inside, unless the first character inside is a caret,
in which case any character except those inside are matched. The \+ means

that multiple characters should be matched.

The tr is to remove extra characters that may be matched (if you think about

the tree format, only open-bracket and comma actually possible).

grep -o '[(,1[":),]\+' tree.txt | tr -4 'O:,"'

Extract branch lengths from a phylogenetic tree

Uses grep to match text that starts with a colon (branch lengths always

follow a colon) and matches every character until a close-bracket or a comma
is found. The cut is to remove the initial colon from each match.

grep -o ':["),]\+' tree.txt | cut -c 2-

26 Otherwise known as the Pathologically Eclectic Rubbish Lister

	History
	Getting and installing Ubuntu
	Acclimatisation
	Fetching the examples
	The command line
	Files and directories
	Commands
	Reading and writing permission
	Dealing with multiple files
	Running multiple programs
	In, out and pipes
	Compression
	Working on remote computers
	Transferring files
	Getting help
	Variables and programming
	Line endings – compatibility problems
	Nice examples

